Interpolation of CT Slices for 3-D Visualization by Maximum Intensity Projections

نویسندگان

  • Samuel Moon-Ho Song
  • Junghyun Kwon
چکیده

Visualization of 3-D volume data through maximum intensity projections (MIP) requires isotropic voxels for generation of undistorted projected images. Unfortunately, due to the inherent scanning geometry, X-ray computed tomographic (CT) images are mostly axial images with submillimeter pixel resolution, with the slice spacing on the order of half to one centimeter. These axial images must be interpolated across the slices prior to the projection operation. The linear interpolation, due to the inherent noise in the data, generates MIP images with noise whose variance varies quadratically along the z-axis. Therefore, such MIP images often suffer from horizontal streaking artifacts, exactly at the position of the original slices (e.g., in coronal and sagittal MIPs). We propose a different interpolation technique based on a digital finite impulse response (FIR) filter. The proposed technique flattens the change in noise variances across the z-axis and results in either elimination or a reduction of horizontal streaking artifacts in coronal and sagittal views.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-solid lung nodules on low-dose computed tomography: comparison of detection rate between 3 visualization techniques

OBJECTIVE To compare various visualization techniques for the detection of non-solid nodules in low-dose lung cancer screening computed tomography (CT) scans. METHODS An enriched sample of 216 male lung cancer screening subjects aged 60.4 ± 6.0 years was used. Two blinded independent readers searched for non-solid nodules on 5-mm multiplanar reconstructions, 1-mm slices and 7-mm maximum inten...

متن کامل

Detecção automática de vazios em isoladores poliméricos por tomografia industrial 3 D Automatic detection of flaws in polymer insulators using 3 D industrial tomography

This work presents a methodology for the automatic detection of flaws in polymer insulators using three-dimensional industrial computed tomography (CT), as well as results obtained in the context of power distribution networks. The CT slices were reconstructed using 180 digital radiographs (projections) acquired by a high resolution system (pixel dimension of 50 μm × 50 μm, a-Si). For the recon...

متن کامل

The use of transport and diffusion equations in the three-dimensional reconstruction of computerized tomographic images

The visualization of a computerized tomographic (TC) exam in 3D increases the quality of the medical diagnosis and, consequently, the success probability in the treatment. To obtain a high quality image it is necessary to obtain slices which are close to one another. Motivated towards the goal of reaching an improved balance between quantity of slices and visualization quality, this research wo...

متن کامل

CT Reconstruction from a Limited Number of X-Ray Projections

Most CT reconstruction system x-ray computed tomography (CT) is a well established visualization technique in medicine and nondestructive testing. However, since CT scanning requires sampling of radiographic projections from different viewing angles, common CT systems with mechanically moving parts are too slow for dynamic imaging, for instance of multiphase flows or live animals. A large numbe...

متن کامل

VDVR: Verifiable Visualization of Projection-Based Data

Practical volume visualization pipelines are never without compromises and errors. A delicate and often-studied component is the interpolation of off-grid samples, where aliasing can lead to misleading artifacts and blurring, potentially hiding fine details of critical importance. The verifiable visualization framework we describe aims to account for these errors directly in the volume generati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002